2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, Jan./Feb. 2023 Advanced Mathematics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

- 1 a. Express $\sqrt{3} + i$ in the polar form and hence find its modulus and amplitude. (06 Marks)
 - b. Find all the values of $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{3/4}$. (07 Marks)
 - c. Expand $\cos^6\theta$ in a series of cosines of multiples of θ .

(07 Marks)

- 2 a. Find the nth derivative of $e^{ax}\cos(bx + c)$. (06 Marks)
 - b. If $y = a \cos(\log x) + b \sin(\log x)$, show that $x^2y_{h+2} + (2n+1)xy_{n+1} + (n^2 + 1)y_n = 0$. (07 Marks)
 - c. Find the nth derivative of cosx cos3x.

(07 Marks)

- 3 a. With the usual notation prove that $\tan \varphi = r \frac{d\theta}{dr}$ (06 Marks)
 - b. Find the angle between the curves $r^w = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$. (07 Marks)
 - c. Obtain the Maclaurin's expansion of $f(x) = \tan x$ upto third degree terms. (07 Marks)
- 4 a. State and prove Euler's theorem.

(06 Marks)

b. If
$$z = f(x, y)$$
 with $x = e^u \sin v$, $y = e^u \cos v$ prove that $\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 = e^{2u} \left\{ \left(\frac{\partial z}{\partial v}\right)^2 + \left(\frac{\partial z}{$

(07 Marks)

c. If
$$x = r\cos\theta$$
, $y = r\sin\theta$, then prove that $JJ^1 = 1$.

(07 Marks)

<u>PART – B</u>

- 5 a. Obtain a reduction formula for $\int_{0}^{\pi/2} \cos^{n} x \, dx$ where n is the integer. (06 Marks)
 - b. Evaluate by changing the order of integration $\int_{0}^{1} \int_{0}^{x} (xy + y^{2}) dxdy$. (07 Marks)
 - c. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{2} xyz \, dz \, dy \, dx$ (07 Marks)

6

$$\beta(m,n) = \frac{\Gamma(m).\Gamma(n)}{\Gamma(m+n)}.$$

(06 Marks)

a. With the usual notation prove that
$$\beta(m,n) = \frac{\Gamma(m).\Gamma(n)}{\Gamma(m+n)}.$$
 b. Prove that
$$\int\limits_{-1}^{1} (1+x)^{m-1} (1-x)^{n-1} \, dx = 2^{m+n-1} \, \beta(m,n).$$
 c. Show that
$$\int\limits_{0}^{\infty} e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}.$$

c. Show that
$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{1}{2} \sqrt{\pi}$$

7

a.
$$(xy - x) dx + (xy + y) dy = 0$$
.

a.
$$(xy - x) dx + (xy + y) dy = 0$$
.
b. $\frac{dy}{dx} = \frac{xy - y^2}{x^2}$.

c.
$$(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0$$

8 a. Solve
$$(D^2 - 6D + 9)$$
 y = e^x

a. Solve
$$(D^2 - 6D + 9)$$
 $y = e^x$.
b. Solve $(D^2 - 6D + 10)$ $y = \cos 2x$.
c. $(D^2 - 2D + 1)^2$ $y = x^2 + x + 1$.

c
$$(D^2 - 2D + 1)^2 v = x^2 + x + 1$$